All about flooble | fun stuff | Get a free chatterbox | Free JavaScript | Avatars    
perplexus dot info

Home > Just Math
Fractional Form Quickie (Posted on 2023-09-04) Difficulty: 2 of 5
Using only p&p, determine the simplest fractional form of this expression:
3333373 - 3333263 
------------------
3333373 + 6666633 

See The Solution Submitted by K Sengupta    
Rating: 4.5000 (2 votes)

Comments: ( Back to comment list | You must be logged in to post comments.)
Solution Another solution Comment 3 of 3 |
Note 333337 + 333326 = 666663.  Then let A=333337 and B=333326.  Then the fraction can be written as (A^3 - B^3) / (A^3 + (A+B)^3).

Factor the numerator and denominator
A^3 - B^3 
= (A-B)*(A^2+AB+B^2)

A^3 + (A+B)^3 
= (A+A+B)*(A^2-A*(A+B)+(A+B)^2) 
= (2A+B)*(A^2+AB+B^2)

Then substitute these factorizations into (A^3 - B^3) / (A^3 + (A+B)^3)
= [(A-B)*(A^2+AB+B^2)] \ [(2A+B)*(A^2+AB+B^2)]
= (A-B)/(2A+B)

Last step is to resubstitute A=333337 and B=333326.  Then (A-B)/(2A+B)
= (333337-333326)/(2*333337+333326)
= 11/1000000.

  Posted by Brian Smith on 2025-03-21 15:33:00
Please log in:
Login:
Password:
Remember me:
Sign up! | Forgot password


Search:
Search body:
Forums (1)
Newest Problems
Random Problem
FAQ | About This Site
Site Statistics
New Comments (4)
Unsolved Problems
Top Rated Problems
This month's top
Most Commented On

Chatterbox:
Copyright © 2002 - 2025 by Animus Pactum Consulting. All rights reserved. Privacy Information