All about flooble | fun stuff | Get a free chatterbox | Free JavaScript | Avatars    
perplexus dot info

Home > Just Math
The Sum of Reciprocals (Posted on 2025-03-26) Difficulty: 3 of 5
Let {an} be a sequence of numbers that satisfy a0 = 3, and (3 − an+1)(6 + an) = 18. Find
  n    1
  ∑   ---
 i=0   ai

No Solution Yet Submitted by Danish Ahmed Khan    
No Rating

Comments: ( Back to comment list | You must be logged in to post comments.)
Solution computer solution | Comment 1 of 3
clc,clearvars
a=vpa(3);
for i=2:100
  a(end+1)=3-18/(6+a(end));
  % disp([i a(end) 1/a(end) sum(1./a)])
  fprintf('%3d %15.14f %15.6f %15.6f ',i,a(end),1/a(end),sum(1./a))
end

clc,clearvars
a=vpa(3);
for i=2:100
  a(end+1)=3-18/(6+a(end));
  % disp([i a(end) 1/a(end) sum(1./a)])
  fprintf('%d,',sum(3./a))
  
end
fprintf(' ')

After 1/a(0) = 1/3:

  i     a(i)                 1/a(i)        sum so far
  
  2 1.00000000000000        1.000000        1.333333
  3 0.42857142857143        2.333333        3.666667
  4 0.20000000000000        5.000000        8.666667
  5 0.09677419354839       10.333333       19.000000
  6 0.04761904761905       21.000000       40.000000
  7 0.02362204724409       42.333333       82.333333
  8 0.01176470588235       85.000000      167.333333
  
seems always a multiple of 1/3

The multiples of 1/3 are

4,11,26,57,120,247,502,1013,2036,4083,8178,16369,32752,...

which the OEIS identifies as A000295 Eulerian numbers.

Some formulae given are


a(n) = 2^n - n - 1.
a(n) = Sum_{k=2..n} binomial(n, k)

starting with n=2 giving 1 for the 1/3 for subscript zero
              n=3 giving 4 for the 4/3 for subscript 1, etc.

 Then these are 2^(n+2) - n - 3.   
 
 Dividing by 3:
 
 (2^(n+2) - n - 3) / 3

Edited on March 26, 2025, 10:57 am
  Posted by Charlie on 2025-03-26 09:48:41

Please log in:
Login:
Password:
Remember me:
Sign up! | Forgot password


Search:
Search body:
Forums (0)
Newest Problems
Random Problem
FAQ | About This Site
Site Statistics
New Comments (4)
Unsolved Problems
Top Rated Problems
This month's top
Most Commented On

Chatterbox:
Copyright © 2002 - 2025 by Animus Pactum Consulting. All rights reserved. Privacy Information