All about flooble | fun stuff | Get a free chatterbox | Free JavaScript | Avatars    
perplexus dot info

Home > Just Math
A Cubed Divisor (Posted on 2025-03-25) Difficulty: 4 of 5
From A Squared Divisor we know for all natural numbers n>=2 that n^(n-1)-1 is divisible by (n-1)^2.

Prove that n=2 and n=3 are the only natural numbers such that n^(n-1)-1 is divisible by (n-1)^3.

No Solution Yet Submitted by Brian Smith    
No Rating

Comments: ( Back to comment list | You must be logged in to post comments.)
Hint Comment 2 of 2 |

To solve the given problem, we need to prove that <math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>n</mi><mo>=</mo><mn>2</mn></mrow><annotation encoding="application/x-tex">n = 2</annotation></semantics></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>n</mi><mo>=</mo><mn>3</mn></mrow><annotation encoding="application/x-tex">n = 3</annotation></semantics></math> are the only natural numbers such that:

<math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><msup><mi>n</mi><mrow><mo stretchy="false">(</mo><mi>n</mi><mo>−</mo><mn>1</mn><mo stretchy="false">)</mo></mrow></msup><mo>−</mo><mn>1</mn></mrow><annotation encoding="application/x-tex">n^{(n-1)} - 1</annotation></semantics></math>

is divisible by <math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mo stretchy="false">(</mo><mi>n</mi><mo>−</mo><mn>1</mn><msup><mo stretchy="false">)</mo><mn>3</mn></msup></mrow><annotation encoding="application/x-tex">(n-1)^3</annotation></semantics></math>.

Edited by uno online 1 day ago


  Posted by Eddie Nelson on 2025-03-28 02:39:56
Please log in:
Login:
Password:
Remember me:
Sign up! | Forgot password


Search:
Search body:
Forums (2)
Newest Problems
Random Problem
FAQ | About This Site
Site Statistics
New Comments (4)
Unsolved Problems
Top Rated Problems
This month's top
Most Commented On

Chatterbox:
Copyright © 2002 - 2025 by Animus Pactum Consulting. All rights reserved. Privacy Information