All about flooble | fun stuff | Get a free chatterbox | Free JavaScript | Avatars    
perplexus dot info

Home > Just Math
System of Diophantine Equations (Posted on 2025-04-08) Difficulty: 3 of 5
Find all non-negative integer solutions to the system of equations

3x2 − 2y2 − 4z2 + 54 = 0
5x2 − 3y2 − 7z2 + 74 = 0

No Solution Yet Submitted by Danish Ahmed Khan    
No Rating

Comments: ( Back to comment list | You must be logged in to post comments.)
Some Thoughts Solution | Comment 1 of 2
Two solutions found:

3x^2 - 2y^2 - 4z^2 + 54 = 0       (1)
5x^2 - 3y^2 - 7z^2 + 74 = 0       (2)

8x^2 - 5y^2 - 11z^2 + 128 = 0    (1) + (2)
2x^2 - y^2 - 3z^2 + 20 = 0          (2) - (1)

21x^2 - 14y^2 - 28z^2 + 378 = 0       (1) x 7
20x^2 - 12y^2 - 28z^2 + 296 = 0       (2) x 4
x^2 - 2y^2 + 82 = 0
x^2 + 82 = 2y^2      (3)

x is even, let x = 2*a; a can be odd or even
4a^2 + 82 = 2y^2 
2a^2 + 41 = y^2 

3x^2 - 2y^2 - 4z^2 + 54 = 0       (1)
4z^2 = 3x^2 - 2y^2 + 54
z^2 = (3/4)*x^2 - (1/2)y^2 + 27/2
z^2 = (3x^2 - 2y^2 + 54)/4

5x^2 - 3y^2 - 7z^2 + 74 = 0       (2)
7z^2 = 5x^2 - 3y^2 + 74 
z^2 = (5x^2 - 3y^2 + 74)/7

Values for x and y which solve equation (3):
[[4, 7],
 [16, 13],
 [40, 29],
 [100, 71],
 [236, 167],
 [584, 413],
 [1376, 973],
 [3404, 2407],
 [8020, 5671]]

Plugging in these x,y values into either equations (1) or (2) finds only 2 integer solutions:

(x, y, z)
(4, 7, 1)
(16, 13, 11)

On second thought, a brute force search would have been much less work, although slower for large numbers

  Posted by Larry on 2025-04-08 10:46:28
Please log in:
Login:
Password:
Remember me:
Sign up! | Forgot password


Search:
Search body:
Forums (0)
Newest Problems
Random Problem
FAQ | About This Site
Site Statistics
New Comments (9)
Unsolved Problems
Top Rated Problems
This month's top
Most Commented On

Chatterbox:
Copyright © 2002 - 2025 by Animus Pactum Consulting. All rights reserved. Privacy Information