All about flooble | fun stuff | Get a free chatterbox | Free JavaScript | Avatars    
perplexus dot info

Home > Just Math
Pythagorean median (Posted on 2025-04-17) Difficulty: 3 of 5
Triangle ABC has integer side lengths for which some ordering of the lengths of all three of its medians form a right triangle. Find the minimum possible perimeter of triangle ABC.

No Solution Yet Submitted by Danish Ahmed Khan    
No Rating

Comments: ( Back to comment list | You must be logged in to post comments.)
Solution computer solution Comment 1 of 1
The minimum perimeter for triangle ABC is 54, with side lengths of 13, 19, and 22. Its medians are of lengths 12, 3*sqrt(105)/2 =~ 15.370426148939397, and 19.5, which can form a right triangle.

The program works in double precision for speed; then, when it finds a valid set, it confirms the calculation using extended precision before displaying the result. The 20 lowest-perimeter cases are presented in a table below.


clc,clearvars
ct=0;
for tot=3:1000
  for a= 1:tot/3
    for b=a:(tot-a)/2
      tri2=[a b];
      c=tot-a-b;
      tri=[tri2 c].^2; % sides are squared for use in median formula
      for s=1:3
        m(s)=sqrt(2*sum(tri(2:3))-tri(1))/2; % uses Apollonius' theorem 
        tri=[tri(3) tri([1 2])];
      end
      m=sort(m);
      diff=m(3)^2-m(1)^2-m(2)^2;
      if abs(diff)<.00001 && m(1)>.000001
        tri=vpa(tri);
        for s=1:3
          m(s)=sqrt(2*sum(tri(2:3))-tri(1))/2;
          tri=[tri(3) tri([1 2])];
        end
        m=sort(m);
        diff=m(3)^2-m(1)^2-m(2)^2;
        if abs(diff)<.000000000000001
          fprintf('%4d %4d %4d %4d %14.10f %14.10f %14.10f %13.10f\n',[a b c tot m diff])
          ct=ct+1;
        end
      end
    end
  end
  if ct>=20
    break
  end
end


   triangle                                                       
     sides    peri-                    medians                    
 ------------  meter -------------------------------------------- 
              
 13   19   22   54    12.0000000000  15.3704261489  19.5000000000 
 17   22   31   70    12.0933866224  22.4499443206  25.5000000000 
 25   38   41  104    24.7840674628  28.1424945589  37.5000000000 
 26   38   44  108    24.0000000000  30.7408522979  39.0000000000 
 34   44   62  140    24.1867732449  44.8998886413  51.0000000000 
 50   76   82  208    49.5681349256  56.2849891179  75.0000000000 
 51   66   93  210    36.2801598673  67.3498329619  76.5000000000 
 52   76   88  216    48.0000000000  61.4817045958  78.0000000000 
 53   62  101  216    27.8612634315  74.4580418759  79.5000000000 
 68   88  124  280    48.3735464898  89.7997772826 102.0000000000 
 75  114  123  312    74.3522023884  84.4274836768 112.5000000000 
 85  118  149  352    70.8819441043 105.9811303959 127.5000000000 
 89  121  158  368    70.9929573972 113.0586131173 133.5000000000 
 91  133  154  378    84.0000000000 107.5929830426 136.5000000000 
100  152  164  416    99.1362698511 112.5699782358 150.0000000000 
101  139  178  418    82.7042925125 126.9340379882 151.5000000000 
102  132  186  420    72.5603197347 134.6996659239 153.0000000000 
104  152  176  432    96.0000000000 122.9634091915 156.0000000000 
106  124  202  432    55.7225268630 148.9160837519 159.0000000000 
117  171  198  486   108.0000000000 138.3338353405 175.5000000000 


  Posted by Charlie on 2025-04-17 12:01:08
Please log in:
Login:
Password:
Remember me:
Sign up! | Forgot password


Search:
Search body:
Forums (0)
Newest Problems
Random Problem
FAQ | About This Site
Site Statistics
New Comments (6)
Unsolved Problems
Top Rated Problems
This month's top
Most Commented On

Chatterbox:
Copyright © 2002 - 2025 by Animus Pactum Consulting. All rights reserved. Privacy Information