If F(n) is a function that satisfies F(1)=F(2)=F(3)=1,with:
F(n+1)=(F(n)*F(n-1)+1)/F(n-2) whenever n>=3.
Find the value of F(6)
F(6) = 7 as seen in the table produced below:
F=[1,1,1];
for n=3:15
F(n+1)=(F(n)*F(n-1)+1)/F(n-2);
end
[[1:16]' F']
tabulates the values of F(1) through F(16):
1 1
2 1
3 1
4 2
5 3
6 7
7 11
8 26
9 41
10 97
11 153
12 362
13 571
14 1351
15 2131
16 5042
This is A005246 in the OEIS.
|
Posted by Charlie
on 2025-04-24 09:54:37 |