All about flooble | fun stuff | Get a free chatterbox | Free JavaScript | Avatars    
perplexus dot info

Home > Just Math
LCM and GCD fraction (Posted on 2025-05-14) Difficulty: 3 of 5
Find the least possible value for the fraction

lcm(a,b)+lcm(b,c)+lcm(c,a)
--------------------------------
gcd(a,b)+gcd(b,c)+gcd(c,a)

over all distinct positive integers a, b, c.

No Solution Yet Submitted by Danish Ahmed Khan    
No Rating

Comments: ( Back to comment list | You must be logged in to post comments.)
Some Thoughts computer exploration | Comment 1 of 2
The answer seems to be 2.5 from:

min=9999; clc
mina=0;minb=0;minc=0;
for tot=6:200
  for a=1:tot/3
    for b=a+1:(tot-a)/2
      c=tot-a-b;
      if c>b
        v=(lcm(a,b)+lcm(a,c)+lcm(c,b))/(gcd(a,b)+gcd(a,c)+gcd(c,b));
        if v<=min
          fprintf('%16.13f %7d %7d %7d',[min mina minb minc])
          fprintf('\n')
          min=v;
          mina=a;
          minb=b;
          minc=c;
        end
      end
    end
  end
end

settles in to multiples of:

     fraction          a       b       c

 2.5000000000000       1       2       4

  Posted by Charlie on 2025-05-14 15:42:03
Please log in:
Login:
Password:
Remember me:
Sign up! | Forgot password


Search:
Search body:
Forums (0)
Newest Problems
Random Problem
FAQ | About This Site
Site Statistics
New Comments (6)
Unsolved Problems
Top Rated Problems
This month's top
Most Commented On

Chatterbox:
Copyright © 2002 - 2025 by Animus Pactum Consulting. All rights reserved. Privacy Information