All about flooble | fun stuff | Get a free chatterbox | Free JavaScript | Avatars    
perplexus dot info

Home > Just Math
Pick Up More Sticks (Posted on 2025-05-27) Difficulty: 3 of 5
You have N sticks with lengths 1, 2, 3, ..., N.
Provide a closed form function in terms of N for the number of distinct valid triangles can you make from these N sticks.

note: reflections and rotations are considered to be the same, and valid triangles must have positive area.

Inspired by 5, 6, Pick Up Sticks

See The Solution Submitted by Larry    
No Rating

Comments: ( Back to comment list | You must be logged in to post comments.)
Solution computer solution | Comment 1 of 2
((2*N-3)*(N-1)*(N-2)/6-floor((N-1)/2))/4

from Jerry W. Lewis's formula under OEIS's A002623, adjusted for a different offset.

clearvars
ctList=[];
for N=3:25
  ct=0;
  sticksets=combinator(N,3,'c');
  for i=1:size(sticksets,1)
    tri=sticksets(i,:);
    if sum(tri)-max(tri)>max(tri)
      ct=ct+1;
    end
  end
  fprintf('%3d %10d %10d\n',N,ct,((2*N-3)*(N-1)*(N-2)/6-floor((N-1)/2))/4);
  ctList(end+1)=ct;
end
fprintf('%d, ',ctList)
fprintf('\n')

produces

  N     triangles  closed formula

  3          0          0
  4          1          1
  5          3          3
  6          7          7
  7         13         13
  8         22         22
  9         34         34
 10         50         50
 11         70         70
 12         95         95
 13        125        125
 14        161        161
 15        203        203
 16        252        252
 17        308        308
 18        372        372
 19        444        444
 20        525        525
 21        615        615
 22        715        715
 23        825        825
 24        946        946
 25       1078       1078
0, 1, 3, 7, 13, 22, 34, 50, 70, 95, 125, 161, 203, 252, 308, 372, 444, 525, 615, 715, 825, 946, 1078, 

The bottom set was produced by the original program without the formula, for input to the OEIS, to identify the sequence.

  Posted by Charlie on 2025-05-27 09:37:45
Please log in:
Login:
Password:
Remember me:
Sign up! | Forgot password


Search:
Search body:
Forums (0)
Newest Problems
Random Problem
FAQ | About This Site
Site Statistics
New Comments (5)
Unsolved Problems
Top Rated Problems
This month's top
Most Commented On

Chatterbox:
Copyright © 2002 - 2025 by Animus Pactum Consulting. All rights reserved. Privacy Information