All about flooble | fun stuff | Get a free chatterbox | Free JavaScript | Avatars    
perplexus dot info

Home > Paradoxes
Marbles Bonanza (Posted on 2003-09-08) Difficulty: 4 of 5
You have an empty container, and an infinite number of marbles, each numbered with an integer from 1 to infinity.

At the start of the minute, you put marbles 1 - 10 into the container, then remove one of the marbles and throw it away. You do this again after 30 seconds, then again in 15 seconds, and again in 7.5 seconds. You continuosly repeat this process, each time after half as long an interval as the time before, until the minute is over.

Since this means that you repeated the process an infinite number of times, you have "processed" all your marbles.

How many marbles are in the container at the end of the minute if for every repetition (numbered N)

A. You remove the marble numbered (10 * N)

B. You remove the marble numbered (N)

See The Solution Submitted by levik    
Rating: 3.6154 (13 votes)

Comments: ( Back to comment list | You must be logged in to post comments.)
re(4): Respectfully, I disagree with all (save perhaps eric) | Comment 16 of 87 |
(In reply to re(3): Respectfully, I disagree with all (save perhaps eric) by SilverKnight)

As I said at the beginning, you theorhetical math guys seem to be operating a level I have not attained but I do not see these as non-sequitors.

I am aware that we are suspending the limits of the ral world and I do not have a problem with that. It does not however change my point.

Once something is counted it is finite, not infinite.

Right up until the very last infinitessimally small unit of time before the end of the minute the set of marbles remains infinte. The act of ceasing to move marbles (or ceasing to write digits) places a limit on the set and makes it finite.
  Posted by FatBoy on 2003-09-09 12:23:49

Please log in:
Login:
Password:
Remember me:
Sign up! | Forgot password


Search:
Search body:
Forums (0)
Newest Problems
Random Problem
FAQ | About This Site
Site Statistics
New Comments (3)
Unsolved Problems
Top Rated Problems
This month's top
Most Commented On

Chatterbox:
Copyright © 2002 - 2024 by Animus Pactum Consulting. All rights reserved. Privacy Information