All about flooble | fun stuff | Get a free chatterbox | Free JavaScript | Avatars    
perplexus dot info

Home > Just Math
Hello Operator (Posted on 2003-10-17) Difficulty: 4 of 5
Consider a binary operation # that is closed under the set of integers (if a and b are integers, then a#b is an integer).

Assume that, for all integers a and b, it is true that (a#b)#a=b.

Prove that a#(b#a)=b.

See The Solution Submitted by DJ    
Rating: 4.2727 (11 votes)

Comments: ( Back to comment list | You must be logged in to post comments.)
re(8): A simple solution | Comment 14 of 19 |
(In reply to re(7): A simple solution by DJ)

I beg to differ. I showed that a#(b#a)=b (which is what the problem asks us to prove).

This is related to, but not equivalent to, that property of inverses. That I invoked that property, which I found useful in the solution is appropriate.
  Posted by SilverKnight on 2003-10-20 12:33:51

Please log in:
Login:
Password:
Remember me:
Sign up! | Forgot password


Search:
Search body:
Forums (0)
Newest Problems
Random Problem
FAQ | About This Site
Site Statistics
New Comments (3)
Unsolved Problems
Top Rated Problems
This month's top
Most Commented On

Chatterbox:
Copyright © 2002 - 2024 by Animus Pactum Consulting. All rights reserved. Privacy Information