![](/images/dot.gif)
Home > Just Math
Some Decic Sin and Cos Sum to Rational Numbers (Posted on 2023-07-12) |
|
Solve for x:
sin10(x)+cos10(x) = 61/256
where, x is in radians.
|
Submitted by K Sengupta
|
Rating: 5.0000 (1 votes)
|
|
Solution:
|
(Hide)
|
sin^2 x+ cos^2 x)^5 = 1^5 =1
=> (sin^2 x)^5+ 5*(sin^2 x)(cos^2 x)+10*(sin^2 x)^3 cos^2 x)^2+ x)+10*(sin^2 x)^
2 cos^2 x)^3+ 5 * sin^2 x (cos ^2 x)^4+ (cos^2x)^5=1
=> sin^10 x+ cos ^10x+ 5*sin^2x*(cos ^2x)(sin^6x +cos ^6x)+ 10* sin^4x* cos^4x(sin^ 2x + cos ^2 x)=1
(sin^2x+ cos^2 x)^3=1
1= Sin ^6x + cos^6x +3sin^2x*cos^2x (sin^2x+cos ^2x)
sin^6x + cos^6 x= 1 - 3*sin^2x* cos ^2x)
Let sin x*cos x =p
Then, sin^6x *cos^6x = 1- 3p^2
Now,
61/256 - 5*p^2(1-3p^2)+10*p^4=1
=> 61/256 +5p^2(1-3*p^2)+10*p^4=1
=> 5*p^2-5*p^4 = 195/256
=> p^2-p^4 =39/256
Let p^2=u(say)
Then, u -u^2 = 39/256
256u^2 -256u+39=0
Or, u= 3/16 and u = 13/16
Or, u= p^2 =3/16
--> p = v3/4 or, p= -v3/4
u = p^2=13/16
--> p = v13/4 or, p = -v13/4
Now, p= v3/4= sinx*cos x
=> 2* sinx* cos x = v3/2
=> sin (2x) = v3/2
=> 2x = pi/3 + n *(2pi)
=> x = pi/6 + n*pi
and, 2x= 2*pi/3+ 2n*pi
=> x = pi/3 + n*pi
Now, p= -v3/4 = sin x* cos x
=> 2* sinx* cos x = -v3/2
=> sin (2x) = -v3/2
=> 2x = (2*pi)/3 + 2*n*2pi
=> x = pi/3 + n*pi
Also, x= 5*pi/3+2*n*pi
=> x = 5pi/6 + npi
Thus, x= pi/6 + npi, pi/3+npi, 2pi/3+n*pi, 5pi/6+ n*pi
|
Comments: (
You must be logged in to post comments.)
|
![](/images/dot.gif) |
Please log in:
Forums (0)
Newest Problems
Random Problem
FAQ |
About This Site
Site Statistics
New Comments (5)
Unsolved Problems
Top Rated Problems
This month's top
Most Commented On
Chatterbox:
|