1/a+1/b+1/c=1/2022=1/(a+b+c)
=> 1/(a+b+c) -1/a =1/b+1/c
=> -(b+c)/(a(a+b+c))= (b+c)/bc)
=> (b+c)(1/(bc) + 1/a(a+b+c)) = 0
=> (b+c) [(a^2 +ab+ac+bc)abc(a+b+c)] =0
=> (b+c)(a+b)(c+a)/(abc(a+b+c)) =0
=> (b+c)(a+b)(c+a)=0.
Case 1: b+c=0
Case 2: a+b=0
Case 3: c+a =0
Considering Case 1:
b+c=0=> b=-c
Then, a+b+c = 2022=> a = 2022
Hence, we have:
1/a^2023 + 1/b^2023 - 1/b^2024 = 1/2022^2023.
Each of the other two cases gives the same result for
1/a^2023 + 1/b^2023 + 1/c^2023.
Consequently, the required value of the expression is
1/2022^2023.
Comments: (
You must be logged in to post comments.)