Given thatf2018(x)= x/(Ax+B) Determine the value of 3B-A
Note: Adapted from a problem appearing in Round 1 of Singapore Mathematical Olympiad Open 2018.
Let f_n(x) = x/(a_n*x+b_n) Then, a_0 = 3, a_1= 9, a_2=21 a_n = 3+2*a_(n-1) => a_(n+3) = 2(a_(n-1)+3) Let u_n= a_n+3 => u_n= 2u_(n-1)*u_n= a_0+3 => u_n = 3*2*(2^n)= 3*2^(n+1) => a_n +3 = 3*2^(n+1) => a_n =3(2^(n+1)-1) and b _n = 2^(n+1) 3B -A = 3* 2^(n+1)- 3(2^(n+1)-1) = 3
blackjack
flooble's webmaster puzzle