All about flooble | fun stuff | Get a free chatterbox | Free JavaScript | Avatars    
perplexus dot info

Home > Logic
Walking the Roads (Posted on 2004-05-01) Difficulty: 3 of 5
Four roads on a plane, each a straight line, are in general position so that no two are parallel and no three pass through the same point. Along each road walks a traveler at a constant speed. Their speeds, however, may not be the same. It's known that two of the travelers have met each of the other three already.

Prove that the other two have also met each other.

The problem can be generalized to an arbitrary number of roads, which makes it even more striking: Assume that two of the travelers met and have each met all the remaining fellows.

Prove that, if this is the case, the remaining ones all have met each other (ie, if two travelers have met everyone, then everyone has met everyone).

  Submitted by Sam    
Rating: 4.2857 (7 votes)
Solution: (Hide)
Let's denote the four straight lines l1, l2, l3, l4 and identify the Travelers by their numbers - #1, #2, #3, and #4. Draw a line perpendicular to the plane in which the four roads are located and think of it as a time axis. Each of the fellows travels with a constant speed. Therefore, the graphs of their motion are straight lines, say, m1, m2, m3, m4.

The fact that point P = (x, y, t) belongs to m(i) is equivalent to saying that

1. point Q = (x, y) lies on l(i).
2. #i passed through the point Q at the time t.

From 1. it follows that projection of mi onto the plane of roads coincides with li.

Also, since #1 and #2 met, at the time of their encounter they were located at the same planar point. Therefore, by 2., m1 and m2 intersect. It must be remembered that two intersecting lines in space define a unique plane. Since #3 met both #1 and #2, m3 intersects both m1 and m2. Therefore, they all lie in the same plane. But the same argument applies to #4 as well. Hence, all four lines m(i), i=1,2,3,4 lie in the same plane. Finally, lines m3 and m4 could not be parallel because their respective projections on the horizontal plane, l3 and l4, intersect. The fact that the lines m3 and m4 intersect means that #3 and #4 happened to be at the same planar point at some point in time which means they have indeed met.

Comments: ( You must be logged in to post comments.)
  Subject Author Date
I have two theories...Kim2006-12-22 04:14:39
Walking the Roadsalex2004-05-05 02:58:34
re: Another question for SamDJ2004-05-02 07:58:04
QuestionAnother question for Samlogischer Verstand2004-05-01 19:31:15
re: SolutionPenny2004-05-01 18:39:16
SolutionSolutionOskar2004-05-01 18:09:41
Please log in:
Login:
Password:
Remember me:
Sign up! | Forgot password


Search:
Search body:
Forums (1)
Newest Problems
Random Problem
FAQ | About This Site
Site Statistics
New Comments (6)
Unsolved Problems
Top Rated Problems
This month's top
Most Commented On

Chatterbox:
Copyright © 2002 - 2024 by Animus Pactum Consulting. All rights reserved. Privacy Information