All about flooble | fun stuff | Get a free chatterbox | Free JavaScript | Avatars    
perplexus dot info

Home > Just Math
Number = Power Remainder II (Posted on 2010-12-12) Difficulty: 3 of 5
(A) Determine all possible value(s) of a 2-digit non leading zero base nine positive integer x such that we will obtain a remainder of x, whenever 2x is divided by the base nine number 100. What are the possible values of x - if a remainder of x is obtained, whenever 5x is divided the base nine number 100?

(B) Determine all possible value(s) of a 2-digit non leading zero base eleven positive integer y such that we will obtain a remainder of y, whenever 2y is divided by the base eleven number 100. What are the possible values y- if a remainder of y is obtained, whenever 5y is divided the base eleven number 100?

*** For an extra challenge, solve this problem without using a computer program.

  Submitted by K Sengupta    
Rating: 5.0000 (1 votes)
Solution: (Hide)
in base 9, the numbers are 37 (decimal 34) and 64 (decimal 58) for the 2^x and 5^x cases respectively.

For base 11, the 2^x case has the solutions 5A (decimal 65) and 95 (decimal 104), while the 5^x case has the solutions 41 (decimal 45) and 59 (decimal 64).

For an explanation, refer to the solution submitted by Charlie in this location.

Comments: ( You must be logged in to post comments.)
  Subject Author Date
Solutioncomputer solutionCharlie2010-12-13 02:29:00
Please log in:
Login:
Password:
Remember me:
Sign up! | Forgot password


Search:
Search body:
Forums (0)
Newest Problems
Random Problem
FAQ | About This Site
Site Statistics
New Comments (3)
Unsolved Problems
Top Rated Problems
This month's top
Most Commented On

Chatterbox:
Copyright © 2002 - 2024 by Animus Pactum Consulting. All rights reserved. Privacy Information