Home > Shapes > Geometry
Parallelogram Requirement (Posted on 2013-07-07) |
|
Let ABCD be a convex quadrilateral.
Prove that ABCD is a parallelogram
if and only if
|AC|2 + |BD|2 = |AB|2 + |BC|2 + |CD|2 + |DA|2.
|
Submitted by Bractals
|
Rating: 3.0000 (1 votes)
|
|
Solution:
|
(Hide)
|
Let PQ denote the vector from point P to point Q.
Let PQ·RS denote the dot product of vector PQ and RS
with PQ·PQ = |PQ|2 = |PQ|2.
|AB|2 + |BC|2 + |CD|2 + |DA|2 =
AB·AB + BC·BC + CD·CD + DA·DA =
AB·AB + BC·BC + CD·CD + DA·DA +
2AB·(AB + BC + CD + DA) =
AB·AB + 2AB·BC + BC·BC + AB·AB + 2AB·DA + DA·DA +
AB·AB + 2AB·CD + CD·CD =
AB·AB + 2AB·BC + BC·BC + BA·BA + 2BA·AD + AD·AD +
AB·AB + 2AB·CD + CD·CD =
(AB + BC)·(AB + BC) +
(BA + AD)·(BA + AD) +
(AB + CD)·(AB + CD) =
AC·AC + BD·BD +
(AB + CD)·(AB + CD) =
|AC|2 + |BD|2 + |AB + CD|2
Therefore,
|AB|2 + |BC|2 + |CD|2 + |DA|2 = |AC|2 + |BD|2 ⇔
|AB + CD|2 = 0 ⇔ AB + CD = 0 ⇔ AB = DC ⇔
ABCD is a parallelogram.
QED
|
Comments: (
You must be logged in to post comments.)
|
|
Please log in:
Forums (0)
Newest Problems
Random Problem
FAQ |
About This Site
Site Statistics
New Comments (3)
Unsolved Problems
Top Rated Problems
This month's top
Most Commented On
Chatterbox:
|