/-\----
/-\//-\\
/-\-----
/-\--/-\
/-\/-\-
////-\\\\
/-\------
//-\\/-\
/-\-------
/-\-//-\\
Each dash in the sequence represents a prime number, with the last (rightmost) dash always representing two, the lowest prime, and the preceding dashes in descending order.
The number of / \ pairs around the dash indicate the exponent on the number (no slashes means a power of zero, for which the term is equal to 1 and does not affect the product).
The patterns given represent the first ten counting numbers:
1 - (2^0) = 1
2 /-\ (2^1) = 2
3 /-\- (3^1)(2^0) = 3*1
4 //-\\ (2^2) = 4
5 /-\-- (5^1)(3^0)(2^0) = 5*1*1
6 /-\/-\ (3^1)(2^1) = 3*2
7 /-\--- (7^1)(5^0)(3^0)(2^0) = 7*1*1*1
8 ///-\\\ (2^3) = 8
9 //-\\- (3^2)(2^0) = 9*1
10 /-\-/-\ (5^1)(3^0)(2^1) = 5*1*2
Therefore, the next few terms in the sequence are:
11 /-\----
12 /-\//-\\
13 /-\-----
14 /-\--/-\
15 /-\/-\-
16 ////-\\\\
17 /-\------
18 //-\\/-\
19 /-\-------
20 /-\-//-\\
And so on. . . |