All about flooble | fun stuff | Get a free chatterbox | Free JavaScript | Avatars    
perplexus dot info

Home > Just Math
A set of subsets (Posted on 2018-01-17) Difficulty: 4 of 5
Create a collection of ten distinct subsets of S = {1, 2, 3, 4, 5, 6} such that:

1. each subset contains three elements,
2. each element of S appears in five subsets, and
3. each pair of elements from S appears in exactly two subsets.

Please explain how you did it.

No Solution Yet Submitted by Ady TZIDON    
Rating: 5.0000 (1 votes)

Comments: ( Back to comment list | You must be logged in to post comments.)
Solution Solution | Comment 1 of 2
{1, 2, 3}, {1, 2, 4}, {1, 3, 5}, {1, 4, 6}, {1, 5, 6}, {2, 3, 6}, {2, 4, 5}, {2, 5, 6}, {3, 4, 5}, {3, 4, 6}

The interesting thing is that every two subsets have at least one number in common. If you connect the subsets that have two numbers in common, then you get the Petersen graph.

               123
               /|\
              / | \
             /  |  \
            /   |   \
           /    |    \
          /     |     \
         /      |      \
        /     236     \
       /       / \       \
      /       |   |       \
     /        |   |        \
124-245-+--+-345-135
    |      \  |   |  /      |
    |       \ |   | /       |
    |        \|   |/        |
    |         +  +         |
    |         |\ /|         |
    |         | + |         |
    |         |/ \|         |
    |      346 256      |
    |       /       \       |
    |      /         \      |
    |     /           \     |
    |    /             \    |
    |   /               \   |
    |  /                 \  |
    | /                   \ |
146------------------156

Edited on January 17, 2018, 10:36 am
  Posted by Math Man on 2018-01-17 08:19:50

Please log in:
Login:
Password:
Remember me:
Sign up! | Forgot password


Search:
Search body:
Forums (0)
Newest Problems
Random Problem
FAQ | About This Site
Site Statistics
New Comments (2)
Unsolved Problems
Top Rated Problems
This month's top
Most Commented On

Chatterbox:
Copyright © 2002 - 2018 by Animus Pactum Consulting. All rights reserved. Privacy Information