All about flooble | fun stuff | Get a free chatterbox | Free JavaScript | Avatars
 perplexus dot info

 48th digit in the head (Posted on 2019-01-30)
What is the 48th digit after the decimal point of the number (21/2 + 31/2)1948.

 No Solution Yet Submitted by Danish Ahmed Khan No Rating

Comments: ( Back to comment list | You must be logged in to post comments.)
 certainly not in my head (but spoiler present anyway) | Comment 1 of 4
Using a calculator and then, for more precision, UBASIC, the part after the decimal point of even powers of (sqrt(2)+sqrt(3)) begin with a series of 9's that's ever increasing in length.

In a calculator

`  2                      9.898979485566356                                        4                      97.98979485566358                                        6                      969.9989690710702                                        8                      9601.99989585503                                        10                      95049.99998947932                                       12                      940897.999998939                                        14                      9313929.99999992                                        16                      92198402.00000002                                       18                      912670090.0000011                                       20                      9034502498.00002                                       `

the even powers show this up to a point.  The question was, Is the conversion to zeros an artifact of rounding error, or do differences beyond the 9's add up to tip the fractional part into having leading zeros. Actually UBASIC confirms that the continuation of 9's goes much further (higher even powers); but I wouldn't know where it ends, or if it ends.

I don't know the reason, or whether this continues, but I took the problem to Wolfram Alpha. That shows 970 digits before the decimal, then 969 9's before "random" digits start.  So the answer to the question is 9.  I just don't know why. Is the 970 digits before the decimal coincidentally close to the 969 9's after the decimal, or does that match continue?

 Posted by Charlie on 2019-01-30 15:02:06

 Search: Search body:
Forums (0)