All about flooble | fun stuff | Get a free chatterbox | Free JavaScript | Avatars
 perplexus dot info

 Cube rooted till 2019 (Posted on 2019-10-23)
Find the floor of the given expression:

1/(1)1/3+1/(2)1/3+1/(3)1/3+...+1/(2019) 1/3

 No Solution Yet Submitted by Danish Ahmed Khan No Rating

Comments: ( Back to comment list | You must be logged in to post comments.)
 computer summation--spoiler | Comment 1 of 3
Text1.Text = ""
crlf = Chr\$(13) + Chr\$(10)

For i = 1 To 2019
tot = tot + 1 / i ^ (1 / 3)
Next

Text1.Text = Text1.Text & crlf & tot & " done"

finds the total is approximately 238.682009915018, making the floor 238.

UBASIC's

5   point 20:open "cubrootd.txt" for output as #2
10   for I=1 to 2019
20     T=T+1/I^(1/3)
30   next
40   print T
50   print #2,T
60   close #2

finds a more precise total
238.682009915017824170857522851591565521186711680291402285179209866264304944641230535568916122204166

but still leaves the answer (the floor function) 238.

 Posted by Charlie on 2019-10-23 13:17:47

 Search: Search body:
Forums (0)