For the imaginary number i, we know that: i*i = -1.
Therefore, i*i*i*i = (-1)*(-1)= 1
Hence, A*i*i*i*i = A
or √(A*i*i*i*i) = √A
or, √(A)*(i*i) = √A,
since sqrt(i*i*i*i) = i*i
or, - √(A) = √(A)
Provide a valid reason for this apparent inconsistency.