All about flooble | fun stuff | Get a free chatterbox | Free JavaScript | Avatars    
perplexus dot info

Home > Just Math > Calculus
Unit square overlap I (Posted on 2023-05-12) Difficulty: 3 of 5
The overlap of two unit squares is a rectangle with area 1/16.

Find the minimum distance between their centers.

No Solution Yet Submitted by Jer    
No Rating

Comments: ( Back to comment list | You must be logged in to post comments.)
Solution numeric solution | Comment 1 of 7

 
for y=0:.1:1
  h=1-y;
  w=(1/16)/h;
  x=1-w;
  dist=sqrt(x^2+y^2);
  fprintf('%11.9f %11.9f %15.13f\n',x,y,dist)
end

takes the center of the first square as the origin and places y in a range of possible places and computes the x value to produce an area of 1/16.

The table produced:

      x           y         distance
0.937500000 0.000000000 0.9375000000000
0.930555556 0.100000000 0.9359132662674
0.921875000 0.200000000 0.9433204734474
0.910714286 0.300000000 0.9588537480784
0.895833333 0.400000000 0.9810796915190
0.875000000 0.500000000 1.0077822185373
0.843750000 0.600000000 1.0353328269209
0.791666667 0.700000000 1.0567573567812
0.687500000 0.800000000 1.0548252224895
0.375000000 0.900000000 0.9750000000000
       -Inf 1.000000000             Inf

shows promising areas at the beginning and the end, which is understandable as x and y can be flipped. It's not symmetric as only y was guaranteed to be an integral multiple of 1/10.

The range of y values was narrowe:

for y=0.933012508-.000001:.0000001:0.933012508+.000001
  h=1-y;
  w=(1/16)/h;
  x=1-w;
  dist=sqrt(x^2+y^2);
  fprintf('%11.9f %11.9f %15.13f\n',x,y,dist)
end

>> unitSquareOverlapI
0.067003927 0.933011508 0.9354143468208
0.067002534 0.933011608 0.9354143468004
0.067001141 0.933011708 0.9354143467817
0.066999748 0.933011808 0.9354143467649
0.066998355 0.933011908 0.9354143467498
0.066996963 0.933012008 0.9354143467365
0.066995570 0.933012108 0.9354143467250
0.066994177 0.933012208 0.9354143467153
0.066992784 0.933012308 0.9354143467073
0.066991391 0.933012408 0.9354143467012
0.066989999 0.933012508 0.9354143466968
0.066988606 0.933012608 0.9354143466943
0.066987213 0.933012708 0.9354143466935   *
0.066985820 0.933012808 0.9354143466945
0.066984427 0.933012908 0.9354143466973
0.066983035 0.933013008 0.9354143467019
0.066981642 0.933013108 0.9354143467082
0.066980249 0.933013208 0.9354143467164
0.066978856 0.933013308 0.9354143467263
0.066977463 0.933013408 0.9354143467380
0.066976070 0.933013508 0.9354143467515

giving the numerical value of   0.9354143466935 as the minimum distance between the centers.

  Posted by Charlie on 2023-05-12 13:49:09
Please log in:
Login:
Password:
Remember me:
Sign up! | Forgot password


Search:
Search body:
Forums (0)
Newest Problems
Random Problem
FAQ | About This Site
Site Statistics
New Comments (8)
Unsolved Problems
Top Rated Problems
This month's top
Most Commented On

Chatterbox:
Copyright © 2002 - 2024 by Animus Pactum Consulting. All rights reserved. Privacy Information