All about flooble | fun stuff | Get a free chatterbox | Free JavaScript | Avatars    
perplexus dot info

Home > Just Math
Find the value of ...... (Posted on 2006-05-14) Difficulty: 3 of 5
If a + b + c = 0, then find the value of

[(bc)/a + (ca)/b + (ab)/c].[a/(bc) + b/(ca) + c/(ab)]

No Solution Yet Submitted by Ravi Raja    
Rating: 4.0000 (1 votes)

Comments: ( Back to comment list | You must be logged in to post comments.)
cyclic expression Comment 6 of 6 |

S1=(b-c)/a +(c-a)/b +(a-b)/c = [bc(b-c)+ca(c-a)+ab(a-b)]/abc

but  E=bc(b-c)+ca(c-a)+ab(a-b) can be factorised. if we put a=b

the expression E=0. so a-b is a factor. similarly b-c ,c-a are factors. so (a-b)(b-c)(c-a) is factor of E. E is of 3rd degree. so

E=K(a-b)(b-c)(c-a) putting a=0,b=1,c=2 we get K=-1. thus


so S1=-(a-b)(b-c)(c-a)/abc.

S2= (a/(b-c) +b/(c-a) +c/(a-b))= [sigma[a(c-a)(a-b)]/(a-b)(b-c)(c-a)

but sigma[a(c-a)(a-b)]=sigma[a(a(b+c)-a^2-bc)]=sigma[-2a^3-abc]= -2(a^3+b^3+c^3)-3abc

but a^3+b^3+c^3=3abc,so sigma[a(c-a)(a-b)]=-9abc

so, S2= -9abc/(a-b)(b-c)(c-a)

S1*S2= 9



  Posted by kumar sharma on 2006-05-26 05:28:22
Please log in:
Remember me:
Sign up! | Forgot password

Search body:
Forums (0)
Newest Problems
Random Problem
FAQ | About This Site
Site Statistics
New Comments (2)
Unsolved Problems
Top Rated Problems
This month's top
Most Commented On

Copyright © 2002 - 2018 by Animus Pactum Consulting. All rights reserved. Privacy Information