All about flooble | fun stuff | Get a free chatterbox | Free JavaScript | Avatars
 perplexus dot info

 Take Second Degree, Solve For Real (Posted on 2007-04-27)
Determine all possible real pairs (m,n) satisfying the following system of equations:

mn2 = 15m2+ 17mn + 15n2

m2n = 20m2 + 3n2

 See The Solution Submitted by K Sengupta Rating: 3.0000 (1 votes)

Comments: ( Back to comment list | You must be logged in to post comments.)
 Solution | Comment 2 of 4 |
`Rewriting the equations:`
`  mn(n-17) = 15(m^2 + n^2)        (1)`
`  m^2*(n-20) = 3n^2               (2)`
`Eq. (2) implies n != 20 and n != 17.`
`Multiplying (1) by n-20 gives`
`  mn(n-17)(n-20) = 15(m^2^[n-20] + n^2*[n-20])`
`                 or`
`  mn(n-17)(n-20) = 15(3n^2 + n^2*[n-20])`
`                 or`
`  mn(n-20) = 15n^2                (3)    `
`Squaring eq. (3) gives`
`  n^2*m^2*(n-20)(n-20) = 15^2*n^4`
`                 or`
`  n^2*3n^2*(n-20) = 15^2*n^4`
`                 or`
`  n^4*(n-95) = 0`
`Which implies n = 0 or n = 95.`
`Eq. (2) implies (m,n) = (0,0), (-19,95), and(19,95) are solutions. But, eq. (1) implies(-19,95) is not a solution. Therefore,`
`         (m,n) = (0,0) and (19,95)             `

 Posted by Bractals on 2007-04-27 12:05:06

 Search: Search body:
Forums (0)