All about flooble | fun stuff | Get a free chatterbox | Free JavaScript | Avatars    
perplexus dot info

Home > Numbers
Permuting Primes Arithmetically (Posted on 2009-01-30) Difficulty: 2 of 5
Determine all possible triplet(s) (A, B, C) of four-digit decimal primes, with A < B < C, such that:

(i) A, B and C (in this order) are in arithmetic sequence, and:

(ii) Each of B and C is obtained by permuting the digits of A, and:

(iii) None of A, B and C can contain any leading zero.

See The Solution Submitted by K Sengupta    
No Rating

Comments: ( Back to comment list | You must be logged in to post comments.)
Some Thoughts re: computer exploration (spoiler?) -- another list | Comment 2 of 4 |
(In reply to computer exploration (spoiler?) by Charlie)

Forgot to do anagrams of first and third elements of the sequence:

1039    2029    3019
1091    5051    9011
1327    2029    2731
1433    2423    3413
1453    3433    5413
1471    4441    7411
1483    4957    8431
1493    5417    9341
1523    2027    2531
1531    2521    3511
1637    2699    3761
1693    5653    9613
1699    5659    9619
1847    3359    4871
1907    4463    7019
1987    5479    8971
2069    4049    6029
2113    2617    3121
2137    4729    7321
2179    5653    9127
2467    4447    6427
2543    3533    4523
2593    3061    3529
2617    5119    7621
2683    5653    8623
2687    5657    8627
2689    5659    8629
2719    5923    9127
2749    3739    4729
2917    5023    7129
3041    3527    4013
3049    3571    4093
3079    5059    7039
3089    5591    8093
3251    4241    5231
3253    4243    5233
3259    4591    5923
3299    6269    9239
3457    4447    5437
3499    6469    9439
3541    3847    4153
3541    4027    4513
3581    6047    8513
3593    6563    9533
3659    4649    5639
3691    6661    9631
3761    4967    6173
3769    5281    6793
3793    6763    9733
4157    5849    7541
4283    6263    8243
4339    6841    9343
4517    6029    7541
4567    5557    6547
4583    6563    8543
4597    6073    7549
4817    6329    7841
4861    5851    6841
4937    6143    7349
5077    6067    7057
5099    7079    9059
5147    6299    7451
5197    7177    9157
5273    6263    7253
5479    6469    7459
5897    7877    9857
6079    7573    9067
6089    7079    8069
6397    6883    7369
6779    8273    9767
7297    8287    9277
7589    8093    8597
7699    8689    9679
8779    9283    9787

 


  Posted by Charlie on 2009-01-30 14:42:29
Please log in:
Login:
Password:
Remember me:
Sign up! | Forgot password


Search:
Search body:
Forums (0)
Newest Problems
Random Problem
FAQ | About This Site
Site Statistics
New Comments (6)
Unsolved Problems
Top Rated Problems
This month's top
Most Commented On

Chatterbox:
Copyright © 2002 - 2017 by Animus Pactum Consulting. All rights reserved. Privacy Information