All about flooble | fun stuff | Get a free chatterbox | Free JavaScript | Avatars    
perplexus dot info

Home > Just Math
Add to Product Inverse (Posted on 2009-03-06) Difficulty: 3 of 5
Determine all possible triplet(s) (x,y,z) of positive rational numbers, with x ≥ y ≥ z, such that each of x + (yz)-1, y + (zx)-1 and, z + (xy)-1 is an integer.

See The Solution Submitted by K Sengupta    
Rating: 4.0000 (2 votes)

Comments: ( Back to comment list | You must be logged in to post comments.)
re: computer exploration | Comment 2 of 5 |
(In reply to computer exploration by Charlie)

Extending the total of numerators plus denominators through 134 doesn't provide any further solutions.
  Posted by Charlie on 2009-03-06 18:54:27

Please log in:
Remember me:
Sign up! | Forgot password

Search body:
Forums (0)
Newest Problems
Random Problem
FAQ | About This Site
Site Statistics
New Comments (2)
Unsolved Problems
Top Rated Problems
This month's top
Most Commented On

Copyright © 2002 - 2018 by Animus Pactum Consulting. All rights reserved. Privacy Information