All about flooble | fun stuff | Get a free chatterbox | Free JavaScript | Avatars
 perplexus dot info

 Digits 1-7 (Posted on 2009-03-30)
A seven digit positive octal integer X is constituted by arranging the nonzero octal digits 1-7 in some order, so that:
• The octal number formed by the first two digits is divisible by 2.
• The octal number formed by the first three digits is divisible by 3.
• The octal number formed by the first four digits is divisible by 4.
• and, so on up to seven digits...
Determine all possible value(s) that X can assume.

 No Solution Yet Submitted by K Sengupta No Rating

Comments: ( Back to comment list | You must be logged in to post comments.)
 re(2): computer solution | Comment 5 of 6 |
(In reply to re: computer solution by Stephanie)

Worked your way, right to left, the following all work, including the one you mention:

`1253674 60  444  1980  22460  87996  3501402173564 52  372  1908  30580  63348  5876362561374 60  252  764  25340  189180  7134682765314 12  204  2764  27340  256716  7810043215674 60  444  3004  7100  72636  8590683261754 44  492  1004  25580  91116  8775483765124 20  84  2644  27220  256596  10430285176234 28  156  3228  31900  64668  13753885261374 60  252  764  25340  90876  14015965317264 52  180  3764  7860  106164  14168845671234 28  156  668  29340  225948  15366686157234 28  156  3740  24220  56988  16298526237154 44  108  3692  15980  81516  16543806572314 12  204  1228  29900  193740  17666046732154 44  108  1132  13420  242796  18156607352614 12  396  1420  21900  120204  19552127531264 52  180  692  12980  176820  2011828`

Obtained by changing LEFT\$ to RIGHT\$ in my program.

 Posted by Charlie on 2009-03-30 17:50:25

 Search: Search body:
Forums (0)