All about flooble | fun stuff | Get a free chatterbox | Free JavaScript | Avatars
 perplexus dot info

 Worldly Integral (Posted on 2009-09-15)
Substitute each of the capital letters in bold by a different digit from 0 to 9 to satisfy this alphametic equation. Neither W nor S is zero and T ≥ 2.

W
∫ x-T dx = .WORLD
S

 See The Solution Submitted by K Sengupta No Rating

Comments: ( Back to comment list | You must be logged in to post comments.)
 computer solution Comment 1 of 1

Integ{1 to 4} x ^ -3 dx = .46875

based on

1  4  3       .46875

from

DEFDBL A-Z
FOR t = 2 TO 9
IF used(t) = 0 THEN
used(t) = 1
FOR s = 1 TO 9
IF used(s) = 0 THEN
used(s) = 1
term2 = s ^ (1 - t) ' numerator of antiderivative at s
FOR w = 1 TO 9
IF used(w) = 0 THEN
used(w) = 1
term1 = w ^ (1 - t) ' numerator of antiderivative at w
FOR o = 0 TO 9
IF used(o) = 0 THEN
used(o) = 1
FOR r = 0 TO 9
IF used(r) = 0 THEN
used(r) = 1
FOR l = 0 TO 9
IF used(l) = 0 THEN
used(l) = 1
FOR d = 0 TO 9
IF used(d) = 0 THEN
used(d) = 1

world = w / 10# + o / 100# + r / 1000# + l / 10000# + d / 100000#
IF term1 - term2 = world * (1 - t) THEN ' denominator introduced here
PRINT s; w; t, world
END IF

used(d) = 0
END IF
NEXT
used(l) = 0
END IF
NEXT
used(r) = 0
END IF
NEXT
used(o) = 0
END IF
NEXT
used(w) = 0
END IF
NEXT
used(s) = 0
END IF
NEXT
used(t) = 0
END IF
NEXT

 Posted by Charlie on 2009-09-15 21:51:52

 Search: Search body:
Forums (0)