All about flooble | fun stuff | Get a free chatterbox | Free JavaScript | Avatars
 perplexus dot info

 Add 1, Get Geometric (Posted on 2013-11-23)
Prove that there exist infinitely many triplets (x,y,z) of distinct positive integers such that: x, y and z are in arithmetic sequence and x, y and z + 1 are in geometric sequence.

 No Solution Yet Submitted by K Sengupta No Rating

Comments: ( Back to comment list | You must be logged in to post comments.)
 SOLUTION Comment 1 of 1

The word "distinct"  is redundant.<o:p></o:p>

If the numbers are not distinct then m,m,m qualifies as  arithm.sequence with d=0,but m,m,m+1 cannot be regarded as geom.. seq, for any m, since m/m and (m+1)/m do not define the same q.

Solution.

Let  Ar. Seq  be                m-d,   m,     m+d

Geom. SE                              m-d,   m,     m+d+1

Solving                          m^2=( m-d)*( m+d+1)

We get     m=d*( d+1)

And the series   is   d^2,   d*( d+1)  and  ( d+1)^2<o:p></o:p>

Example 1      ar/geom. : 36,42,48/49    for m=42, d=6,
q= 7/6  and      - 7/6

Example    2    ar/geom. :    49,42,35/36    for m=42, d=-7,       q= 6/7  and      - 6/7.

For any d except d=o or d=-1 we get  integer triplets.

<o:p> </o:p>

 Posted by Ady TZIDON on 2013-11-23 11:57:28

 Search: Search body:
Forums (0)