(1)^99+(2)^99+....+(98)^99+(99)^99
=1+(((2)^100)/2)+(((3)^100)/3)+....+(((98)^100)/98)+(((99)^100)/99)
=1+last digit(2/2)+last digit(3/3)+last digit(4/4)+....+last digit(99/99)
=1+1+1.....99 times(last digit)
=9.
so the last digit of the given series is 9.