Let p(x)=x^4+ax^3+bx^2+cx+d, where a, b, c, and d are constants.
If p(1)=-9, p(2)=-18, and p(3)=-27, find the value of
¼(p(10)+p(-6)).
(In reply to
If there's only one answer... by Federico Kereki)
Let a be the unknown root, then p(x)=-9x+(x-1)(x-2)(x-3)(x-a)
p(10)=9*8*7*(10-a), p(-6)=-7*-8*-9*(-6-a)=9*8*7*(6+a)
So (p(10)+p(-6))/4 = (7*8*9*(10-a+6+a)-90+54)/4=4*7*8*9-9=2007
Edited on March 16, 2007, 2:11 pm
|
Posted by Gamer
on 2007-03-16 14:08:39 |