All about flooble | fun stuff | Get a free chatterbox | Free JavaScript | Avatars    
perplexus dot info

Home > Just Math > Calculus
Minimum perpendicular (Posted on 2007-05-09) Difficulty: 4 of 5
Let X be a point in the interior of triangle PQR.
Let a line through X intersect rays QP and QR in points A and B respectively.
Let Y be the point on line segment AB such that |BY| = |AX|.

Prove that |AB| is a minimum if and only if AB is perpendicular to QY.

See The Solution Submitted by Bractals    
Rating: 2.6667 (3 votes)

Comments: ( Back to comment list | You must be logged in to post comments.)
Hints/Tips re: minimum? | Comment 2 of 4 |
(In reply to minimum? by Dej Mar)

|AB| means the measure or length of line segment AB. Since the length of AB varies depending on the position of X, Bractals is asking us to prove that |AB| reaches its minimum value (i.e., segment AB has its minimum length for any position of X) iff angle QYA is a right-angle.

:-)


  Posted by JayDeeKay on 2007-05-10 09:03:18
Please log in:
Login:
Password:
Remember me:
Sign up! | Forgot password


Search:
Search body:
Forums (1)
Newest Problems
Random Problem
FAQ | About This Site
Site Statistics
New Comments (6)
Unsolved Problems
Top Rated Problems
This month's top
Most Commented On

Chatterbox:
Copyright © 2002 - 2024 by Animus Pactum Consulting. All rights reserved. Privacy Information