(In reply to
Solution by Praneeth)
Using the values given for p and q in all combinations, I get the following values:
p q p - 1/p + q^2 q/p + pq
-2.825993776082988 -1.572302755514847 -4.944271909999159 4.999689428353011
.3538578210834085 -1.572302755514847 -4.944271909999159 -4.999689428353011
-.3538578210834085 -1.572302755514847 0 4.999689428353011
2.825993776082988 -1.572302755514847 0 -4.999689428353011
-2.825993776082988 1.572302755514847 -4.944271909999159 -4.999689428353011
.3538578210834085 1.572302755514847 -4.944271909999159 4.999689428353011
-.3538578210834085 1.572302755514847 0 -4.999689428353011
2.825993776082988 1.572302755514847 0 4.999689428353011
from
DEFDBL A-Z
CLS
FOR a = -1 TO 1 STEP 2
FOR b = -1 TO 1 STEP 2
FOR c = -1 TO 1 STEP 2
q = a * SQR(2 * (SQR(5) - 1))
p = b * (SQR(5) - 1) + c * SQR(7 - 2 * SQR(5))
PRINT p; TAB(20); q; TAB(40); p - 1 / p - q * q; TAB(60); q / p + p * q
NEXT
NEXT
NEXT
While there are some zeros for the first formula, none of the second produces a 4.
|
Posted by Charlie
on 2007-07-10 11:08:38 |