p-1/p=q² q(p+1/p)=4 square the second eq, q²*(p+1/p)²=16 (p-1/p)*((p-1/p)²+4)=16 let p-1/p=x x³+4x-16=0 => (x-2)*(x²+2x+8)=0 x²+2x+8=0 has no real roots as its discriminant is less than 0 x=2 is the only solution. Solving p-1/p=2 yields p=(1(+/-)√2) substitute these in eq(2) to get q=+√2 for p=(1+√2) and q=-√2 for p=(1-√2)