All about flooble | fun stuff | Get a free chatterbox | Free JavaScript | Avatars    
perplexus dot info

Home > Just Math
A system of modular equations (Posted on 2008-07-20) Difficulty: 3 of 5
Solve the following set of equations for positive integers a and b:

1919(a)(b) mod 5107 = 1
1919(a+1)(b-1) mod 5108 = 5047
1919(a+2)(b-2) mod 5109 = 1148
1919(a+3)(b-3) mod 5110 = 3631
1919(a+4)(b-4) mod 5111 = 2280

See The Solution Submitted by pcbouhid    
Rating: 5.0000 (1 votes)

Comments: ( Back to comment list | You must be logged in to post comments.)
re(3): Solution ------ can you check? | Comment 4 of 8 |
(In reply to re(2): Solution ------ can you check? by K Sengupta)

KS, you wrote:

(a-5107)(b+5107) (mod L) = -26086391

I have the same equation, but with the rhs positive!!

 


  Posted by pcbouhid on 2008-08-01 13:05:37
Please log in:
Login:
Password:
Remember me:
Sign up! | Forgot password


Search:
Search body:
Forums (0)
Newest Problems
Random Problem
FAQ | About This Site
Site Statistics
New Comments (3)
Unsolved Problems
Top Rated Problems
This month's top
Most Commented On

Chatterbox:
Copyright © 2002 - 2024 by Animus Pactum Consulting. All rights reserved. Privacy Information