Each of p and q is a positive integer, with p and q being relatively prime, such that:
p/q = 1 - 1/2 + 1/3 - 1/4 + ...... - 1/1318 + 1/1319
Prove that p is divisible by 1979.
p/q is (reduced so p and q are relatively prime)
9712435370176457211789032112275705035436058023056668172162691122769643536134963
38888741850351821222770718188739928442132420999158026137218088106604226734001382
25430216309937903018719173066724790037423477319068945022066116849733773498221407
27866748793472314555146081954133359219693224842345716201562838113110488664229990
44325850859533239512961728614358089856690812823243618746637187164109560825785983
26698595871590779728432557411439460051445467200841041264264012542094838584355251
46637078869452056788708944608960016712180409515668301909686056363654039823351264
466923197720153813
/
140044263701948804619343436820447743912828330311279107462977
86781959105584828861694180270900155320736866485178357969757814225700469374818454
18627056015641968611654202902769674287048827771357301459887020639751248870614151
71934261220862316341780802377230654486825981311825976235273131790688782312984726
50458406330723014358986732179004322578669107971003162372262774921109835980551500
76789879745230479962807184918663328472109316343903768300078189869559464609212486
79410595324531407209849932757037376488884192237742369637229672994844934665387927
66661068428697404447683623975519360000
and that numerator is divisible by 1979 per UBASIC, and the quotient is
4907749050114430122177378530710310780917664488659256276989737808372735490720042
13688095932466812138843212829075254392184144011701882838412373980093090820617171
42713600965102528053925807512240924728359513551828673583661504219168152348772818
23075668920400361068795392599359959181249734634838664073553733255740519789909040
14313214178642364584619367667689787699186868531199403105930867692829490058507318
47750680076599686573235248818312006089664207782132916252786262022281373716197701
59998523936054601712333979084871155488721783484420566907370417566272885206342225
602285597635247.0
10 Sg=1
20 for Den=1 to 1319
30 Tot=Tot+Sg//Den
40 Sg=-Sg
50 next
60 print Tot:print:print num(Tot):print:print num(Tot)@1979
70 print fnPrime(num(Tot)//1979),prmdiv(num(Tot)//1979)
75 print num(Tot)/1979
80 end
90 '
The function fnPrime indicates that the quotient is not probably prime, but its prime factors must be huge, beyond the capability of UBASIC to factor it.
|
Posted by Charlie
on 2011-01-22 15:51:32 |