Home > Just Math
Two happy ends (Posted on 2011-03-07) |
|
Consider a series of numbers, defined as follows: Starting with any natural number, each member is a sum of the squares of the previous member`s digits.
Prove : The series always reaches either a stuck-on-one sequence: 1,1,1… or a closed loop of the following 8 numbers: 145,42,20,4,16,37,58,89, ...
Ex1: 12345,55,50,25,29,85,89,145….. etc
Ex2: 66,72,53,34,25,29,85,89,145…
Ex3: 91,10,1,1,1…..
re: solution NOT enough
|
| Comment 3 of 11 |
|
(In reply to solution enough by Jer)
Whatever you said is true, but you did not provr that there only two possibilities : a loop of 1,1.. and the closed loop of 8 specific numbers.
|
|
Please log in:
Forums (0)
Newest Problems
Random Problem
FAQ |
About This Site
Site Statistics
New Comments (3)
Unsolved Problems
Top Rated Problems
This month's top
Most Commented On
Chatterbox:
|