Consider three positive integers x, y and z in geometric sequence with x < y < z < 2011 and, x+y=z+1 and determine all possible triplets (x,y,z) that satisfy the given conditions.
The values of x, y, and z can be found from Fibonacci numbers.
x=fibonacci(2n-1)^2
y=fibonacci(2n-1)*fibonacci(2n)
z=fibonacci(2n)^2
x<y<z<2011 for n=1, 2, 3, 4.
n x y z
1 1 1 1
2 4 6 9
3 25 40 64
4 169 273 441
Therefore, the possible triplets are (1, 1, 1), (4, 6, 9), (25, 40, 64), and (169, 273, 441).
|
Posted by Math Man
on 2011-08-03 20:34:14 |