Determine the respective last digit and the first digit (reading left to right) in the base ten expansion of
23232323
Remember that this is evaluated starting at the top-right and proceeding down and to the left.
The last few digits are:...6281606247 (WolframAlpha).
Computing the first digit directly exceeds free computing time.
However:
23^23 20880467999847912034355032910567
(208)^23 206755325231194741614096313923167858253400517600346112
(20880)^23 2258402623254084050800412717447474255438098159...
(208804679)^23 2258402623254084050800412717447474255438098159...
(22584)^23 137220784597010763616783092302409...
(22584026)^23 13722441810163202418417765896222516547...
(225840262)^23 1372244460520242509008858232498435162473428...
suggests that the first few digits are 1372244..., while computing no number longer than a mere 193 decimal digits.
Edited on November 16, 2013, 2:27 am
|
Posted by broll
on 2013-11-16 01:38:05 |