All about flooble | fun stuff | Get a free chatterbox | Free JavaScript | Avatars    
perplexus dot info

Home > Just Math
The golden ratio (Posted on 2015-09-16) Difficulty: 3 of 5
In a Fibonacci sequence 1, 1, 2, 3, 5, …, Fn, Fn+1
define Rn = Fn/ Fn-1

Prove that lim (Rn) as n approaches infinity
is .5*(1+sqrt(5))=1.618...
a.k.a. the golden ratio, φ (phi).

See The Solution Submitted by Ady TZIDON    
Rating: 4.0000 (1 votes)

Comments: ( Back to comment list | You must be logged in to post comments.)
re: Solution | Comment 2 of 6 |
(In reply to Solution by JayDeeKay)

This proof is only half done.  JayDeeKay has proved that if there is a limit it must be the Golden Ratio.  But it has not been proved that there is in fact a limit.  
  Posted by Steve Herman on 2015-09-16 12:28:30

Please log in:
Login:
Password:
Remember me:
Sign up! | Forgot password


Search:
Search body:
Forums (0)
Newest Problems
Random Problem
FAQ | About This Site
Site Statistics
New Comments (3)
Unsolved Problems
Top Rated Problems
This month's top
Most Commented On

Chatterbox:
Copyright © 2002 - 2024 by Animus Pactum Consulting. All rights reserved. Privacy Information