If
1) p = 2*q, 2) 2*perimeter(q-gon) = 3*perimeter(p-gon), and 3) the sum of the two areas is minimized;
then what is the value of q?
perimeter(p-gon) perimeter(q-gon) apothem = ------------------ = ------------------ 2*p*tan(180/p) 2*q*tan(180/q) If 2*perimeter(q-gon) = 3*perimeter(p-gon), then p*tan(180/p) perimeter(p-gon) 2 -------------- = ------------------ = --- q*tan(180/q) perimeter(q-gon) 3 If p = 2*q, then from (2*q)*tan(180/[2*q]) 2 ---------------------- = --- q*tan(180/q) 3 or 3*tan(90/q) = tan(2*[90/q]) = 2*tan(90/q)/[1 - tan(90/q)^2] or tan(90/q)^2 = 1/3 or 90/q = 30 Therefore, q = 3
blackjack
flooble's webmaster puzzle